The circuit depth of symmetric boolean functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The monotone circuit complexity of Boolean functions

Recently, Razborov obtained superpolynomial lower bounds for monotone circuits that lect cliques in graphs. In particular, Razborov showed that detecting cliques of size s in a graph dh m vertices requires monotone circuits of size .Q(m-'/(log m) ~') for fixed s, and size rn ao°~') for ,. :[log ml4J. In this paper we modify the arguments of Razborov to obtain exponential lower bounds for ,moton...

متن کامل

New upper bounds on the Boolean circuit complexity of symmetric functions

In this note, we present improved upper bounds on the circuit complexity of symmetric Boolean functions. In particular, we describe circuits of size 4.5n + o(n) for any symmetric function of n variables, as well as circuits of size 3n for MOD3 function.

متن کامل

On the Balanced Elementary Symmetric Boolean Functions

or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law. SUMMARY In this paper, we give some results towards the conject...

متن کامل

Generalized Rotation Symmetric and Dihedral Symmetric Boolean Functions - 9 Variable Boolean Functions with Nonlinearity 242

Recently, 9-variable Boolean functions having nonlinearity 241, which is strictly greater than the bent concatenation bound of 240, have been discovered in the class of Rotation Symmetric Boolean Functions (RSBFs) by Kavut, Maitra and Yücel. In this paper, we present several 9-variable Boolean functions having nonlinearity of 242, which we obtain by suitably generalizing the classes of RSBFs an...

متن کامل

Regular symmetric groups of boolean functions

is called a Boolean function. By Aut(f) we denote the set of all symmetries of f , i.e., these permutation σ ∈ Sn for which f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn). We show the solution of a problem posed by A. Kisielewicz ([1]). We show that, with the exception of four known groups of small order, every regular permutation group is isomorphic with Aut(f) for some Boolean function f . We pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computer and System Sciences

سال: 1978

ISSN: 0022-0000

DOI: 10.1016/0022-0000(78)90038-7