The circuit depth of symmetric boolean functions
نویسندگان
چکیده
منابع مشابه
The monotone circuit complexity of Boolean functions
Recently, Razborov obtained superpolynomial lower bounds for monotone circuits that lect cliques in graphs. In particular, Razborov showed that detecting cliques of size s in a graph dh m vertices requires monotone circuits of size .Q(m-'/(log m) ~') for fixed s, and size rn ao°~') for ,. :[log ml4J. In this paper we modify the arguments of Razborov to obtain exponential lower bounds for ,moton...
متن کاملNew upper bounds on the Boolean circuit complexity of symmetric functions
In this note, we present improved upper bounds on the circuit complexity of symmetric Boolean functions. In particular, we describe circuits of size 4.5n + o(n) for any symmetric function of n variables, as well as circuits of size 3n for MOD3 function.
متن کاملOn the Balanced Elementary Symmetric Boolean Functions
or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law. SUMMARY In this paper, we give some results towards the conject...
متن کاملGeneralized Rotation Symmetric and Dihedral Symmetric Boolean Functions - 9 Variable Boolean Functions with Nonlinearity 242
Recently, 9-variable Boolean functions having nonlinearity 241, which is strictly greater than the bent concatenation bound of 240, have been discovered in the class of Rotation Symmetric Boolean Functions (RSBFs) by Kavut, Maitra and Yücel. In this paper, we present several 9-variable Boolean functions having nonlinearity of 242, which we obtain by suitably generalizing the classes of RSBFs an...
متن کاملRegular symmetric groups of boolean functions
is called a Boolean function. By Aut(f) we denote the set of all symmetries of f , i.e., these permutation σ ∈ Sn for which f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn). We show the solution of a problem posed by A. Kisielewicz ([1]). We show that, with the exception of four known groups of small order, every regular permutation group is isomorphic with Aut(f) for some Boolean function f . We pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer and System Sciences
سال: 1978
ISSN: 0022-0000
DOI: 10.1016/0022-0000(78)90038-7